
Wellfounded orderings in constructive type theory

March 28, 2011

1 Preliminaries

Subtypes A type S is a subtype of a type T (written S ⊆ T) if every term that is a member of S is a
member of T and further, any two terms that denote the same member of S denote the same member of T .

Recursive types in Nuprl A function F from types to types is monotonic if

S ⊆ T ⇒ F (S) ⊆ F (T)

If F is a monotonic function on types, then it has a fixedpoint:

rec(T.F[T])

This fixedpoint is the least fixedpoint, the union of all the types

Void, F [Void], F [F [Void]], . . . Fn[Void], . . . Fω[Void], . . . Fα[Void] . . .

The “elimination rule” for rec(T.F [T]) lets us prove P (x) for all x ∈ rec(T.F [T]) if from the assumption
that P (x) is true for all x ∈ T ⊆ rec(T.F [T]) we can show that P (x) is true for all x ∈ F [T].

2 Wellfounded trees in constructive type theory

Brouwer based his connstruction of ordinal numbers on well–founded trees. This construction was formaixed
in type theory by Martin-Lof as the W-type. Its key property is that it has a constructible well-founded
ordering which means that we can derive an induction principle for the W-type.

Definition of the W type

W(A;a.B[a]) == rec(W.a:A × (B[a] → W))

Using the propositions as types translation, we can also think of the W-type as (the type of witnesses to) the
(self-referential) proposition:

X == ∃a:A. B[a]⇒ X

The constructor for W and its well formedness lemma

Wsup(a;b) == <a, b>

∀[A:Type]. ∀[B:A → Type]. ∀[a:A]. ∀[b:B[a] → W(A;a.B[a])]. (Wsup(a;b) ∈ W(A;a.B[a]))

Note that we state well–formedness lemmas using the uniform all quantifer. It is defined by:

∀[x:A]. B[x] == ∩x:A. B[x]

1

The definition of two mutually recursive comparisons on W In the following definition (and hence-
forth) we tell Nuprl’s display system to display Wcmp(A;a.B[a];btrue) as ≤ and Wcmp(A;a.B[a];bfalse) as
<.

Wcmp(A;a.B[a];leq)

==r λw1,w2.

if leq

then let a,f = w1 in

∀x:B[a]. ((f x) < w2)

else let a,f = w2 in

∃x:B[a]. (w1 ≤ (f x))

fi

Here is the well–formedness lemma:

∀[A:Type]. ∀[B:A → Type]. ∀[leq:B]. (Wcmp(A;a.B[a];leq) ∈ W(A;a.B[a]) → W(A;a.B[a]) → P)

Some properties of the comparisons

∀[A:Type]. ∀[B:A → Type]. ∀w1,w2:W(A;a.B[a]). ((w1 < w2) ⇒ (w1 ≤ w2))

∀[A:Type]. ∀[B:A → Type]. ∀w1,w2:W(A;a.B[a]). w1 ≤ w2 supposing w1 = w2

∀[A:Type]. ∀[B:A → Type].

∀w1,w2,w3:W(A;a.B[a]).

((((w1 < w2) ⇒ (w2 ≤ w3) ⇒ (w1 < w3)) ∧ ((w1 ≤ w2) ⇒ (w2 < w3) ⇒ (w1 < w3)))

∧ ((w1 ≤ w2) ⇒ (w2 ≤ w3) ⇒ (w1 ≤ w3)))

∀[A:Type]. ∀[B:A → Type]. ∀[w1:W(A;a.B[a])]. (¬(w1 < w1))

The definition of well founded In constructive logic, we say that a relation R is well–founded if there is
an induction principle. This follows, classically but not constructively, if there are no infinite R-descending
chains.

WellFnd(A;x,y.R[x; y]) ==

∀P:A → P. ((∀j:A. ((∀k:{k:A| R[k; j]} . P[k]) ⇒ P[j])) ⇒ (∀n:A. P[n]))

The definition of uniformly well founded If we change all the forall quantifiers in the definition of
well–founded into uniform forall quantifiers, then we get the definition of uniformly well-founded.

uWellFnd(A;x,y.R[x; y]) ==

∀[P:A → P]. ((∀[j:A]. ((∀[k:{k:A| R[k; j]}]. P[k]) ⇒ P[j])) ⇒ (∀[n:A]. P[n]))

The Y combinator

Y == λf.((λx.(f (x x))) (λx.(f (x x))))

∀[f:Top]. (Y f ∼ f (Y f))

The ordering on W is uniformly well founded

∀[A:Type]. ∀[B:A → Type]. uWellFnd(W(A;a.B[a]);w1,w2.w1 < w2)

Y ∈ ∀[A:Type]. ∀[B:A → Type]. uWellFnd(W(A;a.B[a]);w1,w2.w1 < w2)

2

Induction on other types uses a measure function that maps into a W type

∀[T,A:Type]. ∀[B:A → Type]. ∀[measure:T → W(A;a.B[a])]. ∀[P:T → P].

((∀i:T. ((∀j:{j:T| measure[j] < measure[i]} . P[j]) ⇒ P[i])) ⇒ (∀i:T. P[i]))

∀[T,A:Type]. ∀[B:A → Type]. ∀[measure:T → W(A;a.B[a])]. ∀[P:T → P].

((∀[i:T]. ((∀[j:{j:T| measure[j] < measure[i]}]. P[j]) ⇒ P[i])) ⇒ (∀[i:T]. P[i]))

3 The W type as ordinal numbers (the Brouwer ordinals)

The Brouwer ordinal w is the ordinal zero if it has no immediate prdecessors.

isZero(w) == ¬B[fst(w)]

If we can decide which a ∈ A are codes for zero and successor, then we can define ordinal addition and
multiplication:

(w1 + w2)==r let a,f = w2 in if zero a then w1 else Wsup(a;λx.(w1 + f x)) fi

(w1 * w2)==r let a,f = w2 in if succ a then ((w1 * f ·) + w1) else Wsup(a;λx.(w1 * f x)) fi

Here is a theorem (proved in Nuprl) that states several properties of the ordinal arithmetic and its ordering
properties:

∀[A:Type]. ∀[B:A → Type].

∀zero,succ:A → B.

((∀a:A. ((↑(succ a)) ⇒ B[a] ≡ Unit))

⇒ (∀a:A. (¬↑(zero a) ⇐⇒ B[a]))

⇒ (∀a1,a2:A. ((↑(zero a1)) ⇒ (↑(zero a2)) ⇒ (a1 = a2)))

⇒ (∀x,y,z:W(A;a.B[a]).

(((x + (y + z)) = ((x + y) + z))

∧ ((x * (y + z)) = ((x * y) + (x * z)))

∧ ((x * (y * z)) = ((x * y) * z))

∧ (isZero(z) ⇒ isZero(y) ⇒ (z = y))

∧ (isZero(z)

⇒ ((((x + z) = x) ∧ ((z + x) = x)) ∧ ((x * z) = z) ∧ (z = (x * z)) ∧ (z ≤ x)))

∧ ((x ≤ y) ⇒ (((x + z) ≤ (y + z)) ∧ ((z + x) ≤ (z + y))))

∧ ((x < y) ⇒ ((z + x) < (z + y)))

∧ ((x ≤ y) ⇒ ((x * z) ≤ (y * z))))))

·

3

