Wellfounded orderings in constructive type theory

March 28, 2011

1 Preliminaries

Subtypes A type S is a subtype of a type T' (written S C T) if every term that is a member of S is a
member of T" and further, any two terms that denote the same member of S denote the same member of T

Recursive types in Nuprl A function F from types to types is monotonic if
SCT= F(S)CF(T)
If F is a monotonic function on types, then it has a fixedpoint:
rec(T.F[T])
This fixedpoint is the least fixedpoint, the union of all the types
Void, F[Void), F[F[Void)],... F"[Void], ... F¥[Void)],... F*[Void] . ..

The “elimination rule” for rec(T.F[T]) lets us prove P(z) for all x € rec(T.F[T]) if from the assumption
that P(x) is true for all € T' C rec(T.F[T]) we can show that P(x) is true for all z € F[T].

2 Wellfounded trees in constructive type theory
Brouwer based his connstruction of ordinal numbers on well-founded trees. This construction was formaixed

in type theory by Martin-Lof as the W-type. Its key property is that it has a constructible well-founded
ordering which means that we can derive an induction principle for the W-type.

Definition of the W type
W(A;a.B[a]) == rec(W.a:A X (B[a]l] — W))

Using the propositions as types translation, we can also think of the W-type as (the type of witnesses to) the
(self-referential) proposition:

X == Ja:A. Blal]= X

The constructor for W and its well formedness lemma

Wsup(a;b) == <a, b>
V[A:Typel. V[B:A — Typel. V[a:A]. V[b:B[a] — W(A;a.B[a])]. (Wsup(a;b) € W(A;a.B[al))

Note that we state well-formedness lemmas using the uniform all quantifer. It is defined by:

VI[x:A]. B[x] == Nx:A. B[x]

The definition of two mutually recursive comparisons on W In the following definition (and hence-
forth) we tell Nuprl’s display system to display Wemp(A;a.B[a];btrue) as < and Wemp(A;a.Bla];bfalse) as
<.

Wemp(Aj;a.Blal;leq)
==r Awl,w2.
if leq
then let a,f = wl in
Vx:Bla]. ((f x) < w2)
else let a,f = w2 in
dx:Blal. (w1 < (£ x))
fi

Here is the well-formedness lemma:

V[A:Typel. V[B:A — Typel. V[leq:Bl. (Wcmp(A;a.Bl[al;leq) € W(A;a.Blal) — W(A;a.Blal) — P)

Some properties of the comparisons

V[A:Type]. V[B:A — Typel. Vwl,w2:W(A;a.Bla]). (w1l < w2) = w1 < w2))
V[A:Type]l. V[B:A — Typel. Vwl,w2:W(A;a.B[al). wil < w2 supposing wl = w2
VI[A:Type]. V[B:A — Typel.
Vwl,w2,w3:W(A;a.B[a]).
(w1 < w2) = (w2 < w3) = (w1 < w3)) A (w1 < w2) = (w2 < w3) = (w1l < w3)))
AN (wl < w2) = w2 < w3) = (wl < w3)))
V[A:Type]l. V[B:A — Typel. V[wl:W(A;a.B[a])]. (—(wl < wl))

The definition of well founded In constructive logic, we say that a relation R is well-founded if there is
an induction principle. This follows, classically but not constructively, if there are no infinite R-descending
chains.

WellFnd(A;x,y.R[x; yl) ==
VP:A — P. ((Vj:A. ((Vk:{k:Al R[k; j1} . P[k]) = P[j1)) = (Vn:A. P[n]))

The definition of uniformly well founded If we change all the forall quantifiers in the definition of
well-founded into uniform forall quantifiers, then we get the definition of uniformly well-founded.

uWellFnd(A;x,y.R[x; y]) ==
V[P:A —» PI. ((V[j:A]l. ((V[k:{k:A| R[k; jI1} 1. P[k]) = P[j1)) = (V[n:Al. P[n]))

The Y combinator

== Af.((Ax.(f (x x))) (Ax.(f (x x))))
V[f:Topl. (Y £ ~ £ (Y £))

The ordering on W is uniformly well founded

V[A:Type]l. V[B:A — Typel. uWellFnd(W(A;a.B[al);wl,w2.wl < w2)
Y € V[A:Typel. V[B:A — Type]l. uWellFnd(W(A;a.B[al);wl,w2.wl < w2)

Induction on other types uses a measure function that maps into a W type

VI[T,A:Typel. V[B:A — Typel. V([measure:T — W(A;a.B[a]l)]. V[P:T — P].

((Vi:T. ((Vj:{j:T| measure[j] < measure[il} . P[j]) = P[i])) = (Vi:T. P[i]))
VI[T,A:Typel. V[B:A — Typel]. V[measure:T — W(A;a.B[al)]. V[P:T — PJ].

((V[i:T]. ((V[j:{j:T| measure[j] < measure[il}]. P[j]) = P[il)) = (V[i:T]. P[il))

3 The W type as ordinal numbers (the Brouwer ordinals)

The Brouwer ordinal w is the ordinal zero if it has no immediate prdecessors.

isZero(w) == —-Bl[fst(w)]

If we can decide which a € A are codes for zero and successor, then we can define ordinal addition and
multiplication:

(wl + w2)==r let a,f = w2 in if zero a then wl else Wsup(a;Ax.(wl + f x)) fi
(wl * w2)==r let a,f = w2 in if succ a then ((wl * f :) + wl) else Wsup(a;Ax.(wl x f x)) fi

Here is a theorem (proved in Nuprl) that states several properties of the ordinal arithmetic and its ordering
properties:

VI[A:Type]. V[B:A — Typel.
Vzero,succ:A — B.

((Va:A. ((?(succ a)) = Blal = Unit))

= (Va:A. (=t (zero a) <= Blal))

= (Val,a2:A. ((?(zero al)) = (1(zero a2)) = (al = a2)))

= (Vx,y,z:W(A;a.B[al).
((x+ (y+2) =(x+7y)+2)
AN ((x*x (y + 2)) ((x xy) + (x x 2)))
A ((x*x (y x 2)) ((x *xy) * 2))
A (isZero(z) = isZero(y) = (z = y))
N (isZero(z)

= (((x+2)=x) A ((z+x) =x)) AN((x*x2)=2) ANlz=(x=*2) AN (2 %))

ANl = (+z2) < +z) A (z+x) < (z+W)))
AN ((x< y) = ((z+x)< (z+7))
AN = xxz) < G*xz2)))N

